
NAG Fortran Library Routine Document

D03EAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03EAF solves Laplace’s equation in two dimensions for an arbitrary domain bounded internally or
externally by one or more closed contours, given the value of either the unknown function or its normal
derivative (into the domain) at each point of the boundary.

2 Specification

SUBROUTINE D03EAF(STAGE1, EXT, DORM, N, P, Q, X, Y, N1P1, PHI, PHID,
1 ALPHA, C, IC, NP4, ICINT, NP1, IFAIL)

INTEGER N, N1P1, IC, NP4, ICINT(NP1), NP1, IFAIL
real P, Q, X(N1P1), Y(N1P1), PHI(N), PHID(N), ALPHA,

1 C(IC,NP4)
LOGICAL STAGE1, EXT, DORM

3 Description

The routine uses an integral equation method, based upon Green’s formula, which yields the solution, �,
within the domain, given its value or that of its normal derivative at each point of the boundary (except
possibly at a finite number of discrete points). The solution is obtained in two stages. The first, which is
executed once only, determines the complementary boundary values, i.e., �, where its normal derivative is
known and vice versa. The second stage is entered once for each point at which the solution is required.

The boundary is divided into a number of intervals in each of which � and its normal derivative are
approximated by constants. Of these half are evaluated by applying the given boundary conditions at one
‘nodal’ point within each interval while the remainder are determined (in stage 1) by solving a set of
simultaneous linear equations. Here this is achieved by means of auxiliary routines F02WDF and F04JGF,
which will yield the least-squares solution of an overdetermined system of equations as well as the unique
solution of a square non-singular system.

In exterior domains the solution behaves as cþ s log rþOð1=rÞ as r tends to infinity, where c is a
constant, s is the total integral of the normal derivative around the boundary and r is the radial distance
from the origin of co-ordinates. For the Neumann problem (when the normal derivative is given along the
whole boundary) s is fixed by the boundary conditions whilst c is chosen by the user. However, for a
Dirichlet problem (when � is given along the whole boundary) or for a mixed problem, stage 1 produces a
value of c for which s ¼ 0; then as r tends to infinity the solution tends to the constant c.

4 References

Symm G T and Pitfield R A (1974) Solution of Laplace’s equation in two dimensions NPL Report NAC 44
National Physical Laboratory

5 Parameters

1: STAGE1 – LOGICAL Input

On entry: indicates whether the routine call is for stage 1 of the computation as defined in Section 3.
If STAGE1 ¼ :TRUE:, then the call is for stage 1. If STAGE1 ¼ :FALSE:, then the call is for
stage 2.

D03 – Partial Differential Equations D03EAF

[NP3546/20A] D03EAF.1

2: EXT – LOGICAL Input

On entry: the form of the domain. If EXT ¼ :TRUE:, the domain is unbounded. Otherwise the
domain is an interior one.

3: DORM – LOGICAL Input

On entry: the form of the boundary conditions. If DORM ¼ :TRUE:, then the problem is a
Dirichlet or mixed boundary value problem. Otherwise it is a Neumann problem.

4: N – INTEGER Input

On entry: the number of intervals into which the boundary is divided (see Section 7 and Section 8).

5: P – real Input
6: Q – real Input

On entry: to stage 2, P and Q must specify the x and y co-ordinates respectively of a point at which
the solution is required.

When STAGE1 is .TRUE., P and Q are ignored.

7: X(N1P1) – real array Input
8: Y(N1P1) – real array Input

On entry: the x and y co-ordinates respectively of points on the one or more closed contours which
define the domain of the problem.

Note: each contour is described in such a manner that the subscripts of the co-ordinates increase
when the domain is kept on the left. The final point on each contour coincides with the first and, if
a further contour is to be described, the co-ordinates of this point are repeated in the arrays. In this
way each interval is defined by three points, the second of which (the nodal point) always has an
even subscript. In the case of the interior Neumann problem, the outermost boundary contour must
be given first, if there is more than one.

9: N1P1 – INTEGER Input

On entry: the value 2ðNþMÞ � 1, where M denotes the number of closed contours which make up
the boundary.

10: PHI(N) – real array Input/Output

On entry: for stage 1, PHI must contain the nodal values of � or its normal derivative (into the
domain) as prescribed in each interval. For stage 2 it must retain its output values from stage 1.

On exit: from stage 1, it contains the constants which approximate � in each interval. It remains
unchanged on exit from stage 2.

11: PHID(N) – real array Input/Output

On entry: for stage 1, PHIDðiÞ must hold the value 0.0 or 1.0 according as PHIðiÞ contains a value
of � or its normal derivative, for i ¼ 1; 2; . . . ;N. For stage 2 it must retain its output values from
stage 1.

On exit: from stage 1, PHID contains the constants which approximate the normal derivative of � in
each interval. It remains unchanged on exit from stage 2.

12: ALPHA – real Input/Output

On entry: for stage 1, the use of ALPHA depends on the nature of the problem:

if DORM ¼ :TRUE:; ALPHA need not be set.

if DORM ¼ :FALSE: and EXT ¼ :TRUE:; ALPHA must contain the prescribed constant c
(see Section 3).

D03EAF NAG Fortran Library Manual

D03EAF.2 [NP3546/20A]

if DORM ¼ :FALSE: and EXT ¼ :FALSE:; ALPHA must contain an appropriate value
(often zero) for the integral of � around the outermost boundary.

For stage 2, on every call ALPHA must contain the value returned at stage 1.

On exit: from stage 1:

if EXT ¼ :FALSE:; ALPHA contains 0.0.

if EXT ¼ :TRUE: and DORM ¼ :FALSE:; ALPHA is unchanged.

if EXT ¼ :TRUE: and DORM ¼ :TRUE:; ALPHA contains a computed estimate for c.

From stage 2:

ALPHA contains the computed value of � at the point (P,Q).

13: C(IC,NP4) – real array Workspace
14: IC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which D03EAF is
called.

Constraint: IC � Nþ 1.

15: NP4 – INTEGER Input

On entry: the value Nþ 4.

16: ICINT(NP1) – INTEGER array Workspace
17: NP1 – INTEGER Input

On entry: the value Nþ 1.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Invalid tolerance used in an internal call to an auxiliary routine:

ICINTð1Þ ¼ 0

indicates too large a tolerance.

ICINTð1Þ > 0

indicates too small a tolerance.

Note: this error is only possible in stage 1, and the circumstances under which it may occur cannot
be foreseen. In the event of a failure, it is suggested that the user change the scale of the domain of
the problem and apply the routine again.

D03 – Partial Differential Equations D03EAF

[NP3546/20A] D03EAF.3

IFAIL ¼ 2

Incorrect rank obtained by an auxiliary routine; ICINT(1) contains the computed rank.

7 Accuracy

The accuracy of the computed solution depends upon how closely � and its normal derivative may be
approximated by constants in each interval of the boundary and upon how well the boundary contours are
represented by polygons with vertices at the selected points ðXðiÞ;YðiÞÞ, i ¼ 1; 2; . . . ; 2ðNþMÞ � 1.

Consequently, in general, the accuracy increases as the boundary is subdivided into smaller and smaller
intervals and by comparing solutions for successive subdivisions one may obtain an indication of the error
in these solutions.

Alternatively, since the point of maximum error always lies on the boundary of the domain, an estimate of
the error may be obtained by computing � at a sufficient number of points on the boundary where the true
solution is known. The latter method (not applicable to the Neumann problem) is most useful in the case
where � alone is prescribed on the boundary (the Dirichlet problem).

8 Further Comments

The time taken by the routine for stage 1, which is executed once only, is roughly proportional to N2,
being dominated by the time taken to compute the coefficients. The time for each stage 2 application of
the routine is proportional to N.

The intervals into which the boundary is divided need not be of equal lengths.

For many practical problems useful results may be obtained with 20 to 40 intervals per boundary contour.

9 Example

An interior Neumann problem to solve Laplace’s equation in the domain bounded externally by the
triangle with vertices (3,0), ð�3; 0Þ and (0,4), and internally by the triangle with vertices (2,1), (�2; 1) and
(0,3), given that the normal derivative of the solution � is zero on each side of each triangle and, for
uniqueness that the total integral of � around the outer triangle is 16 (the length of the contour).

D03EAF NAG Fortran Library Manual

D03EAF.4 [NP3546/20A]

-3 -2 -1 0 1 2 3

1

2

3

4

Figure 1

This trivial example has the obvious solution � ¼ 1 throughout the domain. However it provides a useful
illustration of data input for a doubly-connected domain. The solution is computed at one corner of each
triangle and at one point inside the domain.

The program is written to handle any of the different types of problem that the routine can solve. The
array dimensions must be increased for larger problems.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D03EAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, M, NP1, IC, NP4, N1, N1P1
PARAMETER (N=6,M=2,NP1=N+1,IC=N+1,NP4=N+4,N1=2*(N+M)-2,

+ N1P1=N1+1)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real ALPHA, C, P, Q
INTEGER I, IFAIL, J, NPTS
LOGICAL DORM, EXT, STGONE

* .. Local Arrays ..
real C1(IC,NP4), PHI(N), PHID(N), X(N1P1), Y(N1P1)
INTEGER ICINT(NP1)

* .. External Subroutines ..
EXTERNAL D03EAF

* .. Executable Statements ..
WRITE (NOUT,*) ’D03EAF Example Program Results’

* Skip heading in data file
READ (NIN,*)

D03 – Partial Differential Equations D03EAF

[NP3546/20A] D03EAF.5

READ (NIN,*) EXT, DORM
STGONE = .TRUE.
WRITE (NOUT,*)
IF (.NOT. EXT .AND. .NOT. DORM) THEN

READ (NIN,*) ALPHA
WRITE (NOUT,*) ’Interior Neumann problem’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Total integral =’, ALPHA

ELSE
IF (EXT .AND. .NOT. DORM) THEN

READ (NIN,*) ALPHA
WRITE (NOUT,*) ’Exterior Neumann problem’
WRITE (NOUT,*)
WRITE (NOUT,99998) ’C=’, ALPHA

END IF
END IF
DO 20 I = 1, N1 + 1

READ (NIN,*) X(I), Y(I)
20 CONTINUE

DO 40 I = 1, N
READ (NIN,*) PHI(I), PHID(I)

40 CONTINUE
IFAIL = 1

*
CALL D03EAF(STGONE,EXT,DORM,N,P,Q,X,Y,N1P1,PHI,PHID,ALPHA,C1,IC,

+ NP4,ICINT,NP1,IFAIL)
*

IF (IFAIL.NE.0) THEN
WRITE (NOUT,*)
WRITE (NOUT,99996) ’Error in D03EAF IFAIL = ’, IFAIL
WRITE (NOUT,*)
WRITE (NOUT,99996) ’The value of RANK is ’, ICINT(1)
STOP

END IF
C = ALPHA
IF (EXT .AND. DORM) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Exterior problem’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Computed C =’, C

END IF
J = 2
WRITE (NOUT,*)
WRITE (NOUT,*) ’Nodes’
WRITE (NOUT,*)

+ ’ X Y PHI PHID’
DO 60 I = 1, N

IF (X(J).EQ.X(J-1) .AND. Y(J).EQ.Y(J-1)) J = J + 2
WRITE (NOUT,99997) X(J), Y(J), PHI(I), PHID(I)
J = J + 2

60 CONTINUE
STGONE = .FALSE.
WRITE (NOUT,*)
WRITE (NOUT,*) ’Selected points’
WRITE (NOUT,*) ’ X Y PHI’
READ (NIN,*) NPTS
DO 80 I = 1, NPTS

READ (NIN,*) P, Q
ALPHA = C

*
CALL D03EAF(STGONE,EXT,DORM,N,P,Q,X,Y,N1P1,PHI,PHID,ALPHA,C1,

+ IC,NP4,ICINT,NP1,IFAIL)
*

WRITE (NOUT,99997) P, Q, ALPHA
80 CONTINUE

STOP
*
99999 FORMAT (1X,A,F15.2)
99998 FORMAT (1X,A,e15.4)
99997 FORMAT (1X,4F15.2)
99996 FORMAT (1X,A,I2)

D03EAF NAG Fortran Library Manual

D03EAF.6 [NP3546/20A]

END

9.2 Program Data

D03EAF Example Program Data
F F
16.0
3.0 0.0
1.5 2.0
0.0 4.0

-1.5 2.0
-3.0 0.0
0.0 0.0
3.0 0.0
3.0 0.0
2.0 1.0
0.0 1.0

-2.0 1.0
-1.0 2.0
0.0 3.0
1.0 2.0
2.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0
0.0 1.0

3
2.0 1.0
2.5 0.5
3.0 0.0

9.3 Program Results

D03EAF Example Program Results

Interior Neumann problem

Total integral = 16.00

Nodes
X Y PHI PHID
1.50 2.00 1.00 0.00

-1.50 2.00 1.00 0.00
0.00 0.00 1.00 0.00
0.00 1.00 1.00 0.00

-1.00 2.00 1.00 0.00
1.00 2.00 1.00 0.00

Selected points
X Y PHI
2.00 1.00 1.00
2.50 0.50 1.00
3.00 0.00 1.00

D03 – Partial Differential Equations D03EAF

[NP3546/20A] D03EAF.7 (last)

	D03EAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	STAGE1
	EXT
	DORM
	N
	P
	Q
	X
	Y
	N1P1
	PHI
	PHID
	ALPHA
	C
	IC
	NP4
	ICINT
	NP1
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

